Semi Square Stable Graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On α-Square-Stable Graphs

The stability number of a graph G, denoted by α(G), is the cardinality of a maximum stable set, and μ(G) is the cardinality of a maximum matching in G. If α(G) + μ(G) equals its order, then G is a König-Egerváry graph. We call G an α-square-stable graph if α(G) = α(G), where G denotes the second power of G. These graphs were first investigated by Randerath and Wolkmann, [18]. In this paper we o...

متن کامل

On Konig-Egervary Square-Stable Graphs

The stability number of a graph G, denoted by α(G), is the cardinality of a maximum stable set, and µ(G) is the cardinality of a maximum matching in G. If α(G) + µ(G) equals its order, then G is a König-Egerváry graph. In this paper we deal with square-stable graphs, i.e., the graphs G enjoying the equality α(G) = α(G 2), where G 2 denotes the second power of G. In particular, we show that a Kö...

متن کامل

Vector Space semi-Cayley Graphs

The original aim of this paper is to construct a graph associated to a vector space. By inspiration of the classical definition for the Cayley graph related to a group we define Cayley graph of a vector space. The vector space Cayley graph ${rm Cay(mathcal{V},S)}$ is a graph with the vertex set the whole vectors of the vector space $mathcal{V}$ and two vectors $v_1,v_2$ join by an edge whenever...

متن کامل

Random Latin square graphs

In this paper we introduce new models of random graphs, arising from Latin squares which include random Cayley graphs as a special case. We investigate some properties of these graphs including their clique, independence and chromatic numbers, their expansion properties as well as their connectivity and Hamiltonicity. The results obtained are compared with other models of random graphs and seve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2019

ISSN: 2227-7390

DOI: 10.3390/math7070597